We humans think we’re pretty clever with all of the different ways that we have of communicating with each other. We vocalize, we have expressive faces, we gesture. It seems like plenty of modes of communication, but we’re missing out on a few that are routine for animals, including texture: Animals can express emotional states through skin changes, like when cats cause their hair to stand up, or when a blowfish inflates itself and gets all pokey. We can’t make textural expressions like these (although it does sometimes happen to us involuntarily), but we can often do a reasonable job of interpreting them when we see them: Anything that grows spikes, for example, probably prefers not to be touched.

Guy Hoffman’s Human-Robot Collaboration & Companionship (HRC2) Lab at Cornell University is working on a new robot that’s designed to investigate this concept of textural communication, which really hasn’t been explored in robotics all that much. The robot uses a pneumatically powered elastomer skin that can be dynamically textured with either goosebumps or spikes, which should help it communicate more effectively, especially if what it’s trying to communicate is, “Don’t touch me!”

The robot has two texture modules, one on each side, which are designed to be gripped while interacting with it. Each texture module consists of multiple texture units arranged in a grid, all of which actuate at the same time. The texture units are made of hollowed out elastomers connected to each other through a network of internal channels that can be filled with pressurized air. Adding air causes the texture units to inflate, popping up above the surface of the texture module to form shapes that can be both seen and felt.


The researchers equipped their prototype robot with two different kinds of texture units: Goosebumps, which form rounded domes when inflated, and spikes, which include rigid little pokey bits. The spikes can’t be completely flattened, but by reversing the pneumatic pressure, they can be sucked back down into the structure of the elastomer. All of the similar units in each module are connected to each other, such that a single module can be as spikey or as goosebumpy as you like.

Since humans don’t have a lot of experience with tactile communication, the researchers had to figure out a way of translating goosebumps and spikes into something that humans could understand. That’s part of the reason why the texture modules are mounted on each side of a little screen with an expressive face in this social robot prototype, to help the researchers figure out how well textures can be mapped onto emotions, with and without supplementary emotional expression from the robot. That’s one of the things they’re working on next.

Source link